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An effective (matrix) model for deconfinement
Lattice: SU(N) gauge theories, without quarks.   
       Simulations show: N = 3 close to N = ∞.  Not just the pressure.

Simple matrix model, valid in large N expansion (no small masses).

   Fit to pressure for all N with 2 parameters

   Good agreement with interface tensions 

   Disagrees with the (renormalized) Polyakov loop - ?

   New: adjoint Higgs phase, with split masses, for T < 1.2 Tc.

   Unexpected: transition region very narrow, < 1.2 Tc

Dumitru, Guo, Hidaka, Korthals-Altes, & RDP, arXiv:1011.3820 + ...
Generalization of Meisinger, Miller, Ogilvie ph/0108009

Y. Hidaka & RDP, 0803.0453, 0906.1751, 0907.4609, 0912.0940.
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What the lattice tells us

Weak dependence on # colors

Not just the pressure...
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Lattice: SU(N) thermodynamics ≈ independent of N
SU(N) gauge theories without quarks, temperature T ≠ 0
Scaled by ideal gas, energy “e” and pressure “p” approximately independent of N.  
e and p ≈ 0 below Tc: ~ N2 - 1 gluons above Tc, vs ~ 1 hadrons below.
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p/pSB

SU(3)
SU(4)
SU(6)

Boyd, Engels, Karsch, 
Laermann, Legeland, 
Luetgemeier, Petersson, 
lat/9602007
Datta & Gupta, 1006.0938
                         
Width of “semi”-QGP?

pressure: wide ~ 4 Tc

energy: narrow, ~ 1.5 Tc

← p/pideal

e/eideal ↓

↑ Tc 4 Tc ↑T→

N = 3, 4, 6
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Lattice: peak in conformal anomaly
For SU(N), “peak” in e-3p/T4  just above Tc.  Approximately uniform in N.

Not near Tc: transition 2nd order for N = 2, 1st order for all N ≥ 3
         N=3: weakly 1st order.  N =  ∞: strongly 1st order (latent heat ~ N2)
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T/Tc
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Datta & Gupta, 1006.0938

long tail?

↑ Tc 4 Tc ↑

1
N2 − 1

e− 3p

T 4
↑

T→

N = 3, 4, 6
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Lattice: tail in the conformal anomaly
Scaling: (e-3p)/T2 approximately constant above 1.2 Tc: MMO ’01; RDP, ph/0608242

Only true near Tc ; eventually, (e-3p)/T4 ~ g4(T) 

Datta & Gupta, 1006.0938
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↑ Tc 4 Tc ↑T→

1
N2 − 1

e− 3p

T 2 T 2
c

↑

N = 3, 4, 6
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Lattice: precise results for three colors

Lattice: WHOT. Change # time steps at fixed lattice scale.  Higher precision, ± 1%

p(T ) ≈ # T 2(T 2 − c T 2
c ) , c = 1.00± .01

T : 1.2→ 2 Tc :
e− 3p

T 2
≈ (543 MeV)2 ± 1%

1.0 1.2 1.4 1.6 1.8 2.0

0.1

0.2

0.3

0.4

0.5

2 Tc↑↑ Tc

1
8

e− 3p

T 2 T 2
c

↑

↑ 1.2 Tc

Umeda, Ejiri, Aoki, Hatusda,
Kanaya, Maezawa, Ohno, 
0809.2842

T→

                      Punchline: T > 1.2 Tc: constant => 
                                     p(T) ~ # T2 

T < 1.2Tc: transition region.  Narrow

7Tuesday, July 19, 2011



Resummed perturbation theory works down to ~ 8 Tc

e− 3p

T 2 T 2
c

↑

HTL resummed, NNLO, good to ~ 8 Tc Andersen, Leganger, Strickland, Su, 1105.0514

QCD coupling runs like α(2πT), moderate at Tc, α(2πTc) ~ 0.3
Braaten & Nieto, hep-ph/9501375, Laine & Schröder, hep-ph/0503061 & 0603048
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f
 = 0

 Perhaps αs is not so big at Tc

Braaten & Nieto, hep-ph/9501375 Laine & Schröder, hep-ph/0503061 & 0603048
From two loop calculation, matching original to effective theory: 
Pure gauge: α(7. T).  3 flavors of quarks: α(9. T).

Tc ~ ΛMS ~ 200 MeV.  So αseff(T) ~ αseff(2 π T) ~ 0.3 at  Tc: not so big
Grey band uncertainty from changing scale by factor 2.

α
eff
s

(T ) ↑

T/Λ
MS

→

α
eff
s

(Tc) ≈ 0.3

α(2πT)
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“Hidden” Z(2) spins in SU(2)
Consider constant gauge transformation:

As Uc ~ 1, locally gluons invariant:

Nonlocally, Wilson line changes:

L ~ propagator for “test” quark.  

SU(3): det Uc = 1 ⇒ 
            j = 0, 1, 2
SU(N): Uc = e2 π i j/N 1: Z(N) symmetry.

Z(N) spins of ‘t Hooft, without quarks

Quarks ~ background Z(N) field, break Z(N) sym.

N = 3

Aµ → U†
c Aµ Uc = +Aµ

Uc =
�
−1 0
0 −1

�
= −1

L = P eig
R 1/T
0 A0 dτ → −L

Uc = e2πij/3 1

ψ → Ucψ = −ψ

10Tuesday, July 19, 2011



Usual spins vs Polyakov Loop

T→ Tc ↑ 

<l>↑

< � >∼ e−Ftest qk/T

L = SU(N) matrix, Polyakov loop l ~ trace:

Confinement: Ftest qk = ∞ ⇒ 〈 l 〉 = 0

Above Tc, Ftest qk < ∞ ⇒ 〈 l 〉 ≠ 0

〈 l 〉 measures ionization of color:
partial ionization when 0 < 〈 l 〉 < 1 : “semi”-QGP

Svetitsky and Yaffe ’80: 
SU(3) 1st order because Z(3) allows cubic terms:

Does not apply for N > 3.  So why is deconfinement 1st order for all N ≥ 3?

Leff ∼ �3 + (�∗)3

� =
1
N

trL
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Polyakov Loop from Lattice: pure Glue, no Quarks
Lattice: (renormalized) Polyakov loop.  Strict order parameter
Three colors: Gupta, Hubner, Kaczmarek, 0711.2251.
Suggests wide transition region, like pressure, to ~ 4 Tc.
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L3

r

T/Tc

-
direct renormalization

QQ renormalization

T → 

<loop>↑

↑ ~ 4 Tc 

←1.0

← ~ 0.4

↑ Tc↑T=0

←  Confined  →← SemiQGP→ ←  “Complete” QGP  →   
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Polyakov Loop from Lattice: Glue plus Quarks, “Tc”

Quarks ~ background Z(3) field.  Lattice: Bazavov et al, 0903.4379.
3 quark flavors: weak Z(3) field, does not wash out approximate Z(3) symmetry.

0.0
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Tr0 
Lren

p4, N!=6

8
asqtad, N!=6

8

↑“Tc”.8“Tc”↑ 2 “Tc”↑

← 0.2

←    Hadronic       →←            “Semi”-QGP               →←Complete QGP

<loop> ↑

↑T=0

←1.0

T → 
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Interface tensions: order-order & order-disorder
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T >> Tc T ~ Tc T < Tc

Im l↑
Re l→

Lattice, A. Kurkela, unpub.’d: 3 colors, loop l complex.  Distribution of loop
shows Z(3) symmetry

zInterface tension: box long in z.  
Each end: distinct but degenerate vacua.
Interface forms, action ~ interface tension:

T > Tc: order-order interface = ‘t Hooft loop:
             measures response to magnetic charge
               Korthals-Altes, Kovner, & Stephanov, hep-ph/9909516

Also: if trans. 1st order, order-disorder interface at Tc .

Z ∼ e−σintVtr
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Lattice: order-order interface tensions σ
Lattice: de Forcrand & Noth, lat/0510081. σ ~ universal with N
Semi-classical σ : Giovanengelli & Korthals-Altes ph/0102022; /0212298; /0412322: GKA ‘04
Above 4 Tc, semi-class σ ~ lattice.  Below 4 Tc, lattice σ <<  semi-classical σ.
         Even so, when N > 3, all tensions satisfy “Casimir scaling” at T > 1.2 Tc.
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SU(8), k=2
SU(8), k=3
SU(8), k=4

GKA T/ MSbar=1.35

↑ Tc 4.5 Tc↑N = 4

Semi-classical↓

T→

 ⇐ lattice

σk

T 2 k(N − k)
↑
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T/Tc

mD/T  
Nf=0
Nf=2

Lattice: A0 mass as T → Tc - up or down?

Kaczmarek, Karsch, Laermann, Lutgemeier lat/9908010

μ/T goes down as T → Tc

�trL†(x) trL(0)� ∼ e−µx/xd

mD/T goes up as T → Tc

Which way do masses go as T → Tc?
Both are constant above ~ 1.5 Tc.
Cucchieri, Karsch, Petreczky lat/0103009, 
Kaczmarek, Zantow lat/0503017

T→

T→

Gauge invariant: 2 pt function of loops:

Gauge dependent: singlet potential

�tr
�
L†(x)L(0)

�
� ∼ e−mDx/x

↑ Tc ↑ 2Tc

mD

T
↑

µ

T
↑

↑ 2Tc↑ Tc
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Other models
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Models for the semi-QGP, Tc to 4 Tc

1. Massive gluons: Peshier, Kampfer, Pavlenko, Soff ’96...Castorina, Miller, Satz 1101.1255
                                                                             Castorina, Greco, Jaccarino, Zappala 1105.5902 

p(T ) = #T 4 −m2 T 2 + . . .
Mass decreases pressure, so adjust
m(T) to fit p(T).  Simple model.
Gluons very massive near Tc.

2. Polyakov loops: Fukushima ph/0310121...Hell, Kashiwa, Weise 1104.0572

Veff (T ) ∼ m2�∗� + T log f(�∗�)Effective potential of Polyakov loops.
Potential has 5 parameters,  bit ungainly
With quarks, can go from μ = 0, T ≠ 0, to μ ≠ 0 m2 = T 4

3�

i=0

ai(Tc/T )i

3. AdS/CFT: Gubser, Nellore 0804.0434...Gursoy, Kiritsis, Mazzanti, Nitti, 0903.2859

Add potential for dilaton, φ, to fit pressure.
Only infinite N. Relatively simple potential,

V (φ) ∼ cosh(γφ) + b φ2

None of these models fit interface tensions.  
Masses: near Tc, massive gluons heavy, Polyakov loops light.  
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Matrix model: two colors

Simple approximation

Two colors: transition 2nd order, vs 1st for N ≥ 3
                                                      

Using large N expansion at N = 2
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Matrix model: SU(2)
Simple approximation: constant A0 ~ σ3 , nonperturbative, ~ 1/g:

Point halfway in between: q = ½ , l = 0 .
Confined vacuum, Lc,  

Classically, A0cl has zero action: no potential for q.

Single dynamical field, q 
Loop l real.  Z(2) degenerate vacua q = 0 and 1:

x xx Re l→
q = 0q = 1 q =

1
2

1 -1  0 

� = cos(πq)

Lc =
�

i 0
0 −i

�

L(q) =
�

eiπq 0
0 e−iπq

�
σ3 =

�
1 0
0 −1

�
Acl

0 =
πT

g
q σ3
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Potential for q, interface tension
Computing to one loop order about A0cl gives a potential for q: Gross, RDP, Yaffe, ‘81

Use Vpert(q) to compute σ: Bhattacharya, Gocksch, Korthals-Altes, RDP, ph/9205231.

⇒ σ =
4π2

3
√

6
T 2

�
g2

Balancing Scl ~ 1/g2 and Vpert ~ 1 gives σ ~ 1/√g2 (not 1/g2). 

Width interface ~ 1/g, justifies expansion about constant A0cl.  GKA ‘04: σ ~ ... + g2

Vtot(q) =
2π2T 2

g2

�
dq

dz

�2

+ Vpert(q)

q →

Vpert(q) ↑

10x x

x Vpert(q) =
4π2

3
T 4 q2(1− q)2
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Symmetries of the q’s

Wilson line L not gauge invariant, L → Ω† L Ω.  
Its eigenvalues, e± i π q , are. 

Ordering of L’s eigenvalues irrelevant.

Symmetries: q → q + 2 : q angular variable. Valid with quarks.

Pure glue: also, q → q + 1, Z(2) transf., L → - L 

For pure glue, can restrict q: 0 → 1.  

Then Z(2) transf. q → 1 - q: 
Z(2) transf., plus exchange of eigenvalues

Any potential of q must be invariant under q → 1- q

L(q) =
�

eiπq 0
0 e−iπq

�

L(1− q) = −
�

e−iπq 0
0 eiπq

�
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Potentials for the q’s
At 2 loop order, find terms Vpert~ g2 T4 q(1-q).  Destabilize pert. vacuum?
      Absorbed into 1 loop corrected eigenvalues of L, e± i π qren
Perturbatively, 〈qren〉 = 0. Gocksch & RDP, ph/9302233

Add non-pert. terms, by hand, to generate <q> ≠ 0 :

T < Tc:  〈q〉 = ½ →

1q →0x x

xVeff (q) ↑

q → 1
←T >> Tc:  〈q〉 = 0,1

0x x

xVeff (q) ↑
Veff (q) = Vpert + Vnon
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Possible “phases” and transitions

Three possible “phases”: 

〈q〉 = 0, 1:  〈l〉 = ± 1: “Complete” QGP: usual perturbation theory. T >> Tc .

0 < 〈q〉 < 1/2: 〈l〉 < 1: “semi”-QGP.  Adjoint Higgs phase for A0. x Tc > T > Tc  x?

〈q〉 = 1/2: 〈l〉 = 0 : confined phase.  T < Tc

Two phase transitions possible.

Lattice: one transition, to confined phase, at Tc.  No other transition above Tc.

Strongly constrains possible non-perturbative terms, Vnon(q).
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Vnon(q) ∼ q(1− q)

Getting three “phases”, one transition

Simple guess: Vnon ~ loop2,

1st order transition directly from complete QGP to confined phase, not 2nd 

Generic if Vnon(q) ~ q2 at q << 1.  

Easy to avoid, if  Vnon(q) ~ q for small q.  Then 〈q〉  ≠  0 at all T.

Imposing the symmetry of q ↔ 1 - q, Vnon(q) must include

0.2 0.4 0.6 0.8 1.0

0.001

0.002

0.003

0.004

x xx

Veff ↑

q →

Veff ∼
a

π2
(�2 − 1) + q2(1− q)2

∼ q2(1− a)− 2q3 + . . .
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Cartoons of deconfinement
Consider:

0.2 0.4 0.6 0.8 1.0

�0.015

�0.010

�0.005

⇓ a = ¼: semi QGP

xx

Veff ↑

⇓ a = 0: complete QGP

0.2 0.4 0.6 0.8 1.0

0.01

0.02
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0.06

x x

Veff ↑

q →

q →

0.2 0.4 0.6 0.8 1.0

�0.06

�0.05

�0.04

�0.03

�0.02

�0.01

a = ½:                       Tc=>
Stable vacuum at q = ½
Transition second order

x

q →

Veff = q2(1− q)2 − a q(1− q) , a ∼ T 2
c /T 2
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Meisinger, Miller, Ogilvie ph/0108009, MMO: 
take Vnon ~ T2

0-parameter matrix model, N = 2

Two conditions: transition occurs at Tc, pressure(Tc) = 0
Fixes c1 and c3, no free parameters.  Not close to lattice data (from ’89!)

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

↑ Tc 3 Tc ↑T→

e− 3p

3 T 4
↑

 ⇐ 0-parameter model

 ⇐ Lattice

Vnon(q) =
4π2

3
T 2 T 2

c

�
− c1

5
q(1− q) +

c3

15

�

Lattice: Engels, Fingberg, 
Redlich, Satz, Weber ‘89
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1-parameter matrix model, N = 2
Dumitru, Guo, Hidaka, Korthals-Altes, RDP ‘10:  to usual perturbative potential,

Add - by hand - a non-pert. potential Vnon ~ T2 Tc2.  Also add a term like Vpert:

Vpert(q) =
4π2

3
T 4

�
− 1

20
+ q2(1− q)2

�

Now just like any other mean field theory.  〈q〉  given by minimum of Veff:

〈q〉 depends nontrivially on temperature.

Pressure value of potential at minimum:

Vnon(q) =
4π2

3
T 2 T 2

c

�
− c1

5
q(1− q)− c2 q2(1− q)2 +

c3

15

�

Veff (q) = Vpert(q) + Vnon(q)

p(T ) = −Veff (�q�)

d

dq
Veff (q)

����
q=�q�

= 0
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Lattice vs matrix models, N = 2
Choose c2 to fit e-3p/T4: optimal choice

Reasonable fit to e-3p/T4; also to p/T4, e/T4.

N.B.: c2 ~ 1.  At Tc, terms ~ q2(1-q)2 almost cancel.  

↑ Tc 3 Tc ↑T→

e− 3p

3 T 4
↑

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4
 ⇐ Lattice  

 ⇐ 0-parameter 

 ⇐ 1-parameter 

c1 = 0.23 , c2 = .91 , c3 = 1.11

Lattice: Engels, Fingberg, 
Redlich, Satz, Weber ‘89
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Lattice vs 1-parameter model, N = 2
c1 = 0.23 , c2 = .91 , c3 = 1.11

-0.5

 0

 0.5

 1

 1.5

 1  1.5  2  2.5  3
T / TC

p/T4

Latt. p/T4
e/3T4

Latt. e/3T4
/T4

Latt. /T4

↑ Tc 3Tc ↑T→

 ⇐ e-3p/T4, lattice

 ⇐ e-3p/T4, model

 ⇑ p/T4, lattice

 ⇓ e/T4, model  ⇓ e/T4, lattice

 ⇑ p/T4, model
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Width of transition region, 0- vs 1-parameter
1-parameter model: get sharper e-3p/T4 because 〈q〉 -> 0 much quicker above Tc.
Physically: sharp e-3p/T4 implies region where 〈q〉 is significant is narrow

N.B.: 〈q〉 ≠ 0 at all T, but numerically, negligible above ~ 1.2 Tc; p ~ 〈q〉2.
Above ~1.2 Tc, the T2 term in the pressure is due entirely to the constant term, c3!

1.2 1.4 1.6 1.8 2.0

0.1

0.2

0.3

0.4

0.5

 ⇐ 0-parameter

 ⇓ 1-parameter

�q� ↑

↑ Tc 2 Tc ↑T→
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Polyakov loop: 1-parameter matrix model ≠ lattice
Lattice: renormalized Polyakov loop.  Matrix model: 〈l〉 = cos( π q/2)
0-parameter model: close to lattice
1-parameter model: sharp disagreement. 〈l〉 rises to ~ 1 much faster - ?
                                 Ambiguity of zero point energy?

1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

 ⇐ lattice

 ⇐ 0-parameter

 ⇓ 1-parameter

��� ↑

↑ Tc T→ 2 Tc ↑

Lattice:
Cardoso, Cardoso,
Bicudo, 1104.5432

��� → e−E0/T ��� ?
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Interface tension, N = 2
σ vanishes as T→Tc , σ ~ (t-1)2ν .
Ising 2ν ~ 1.26; Lattice: ~ 1.32.
Matrix model: ~ 1.5: c2 important.

Semi-class.: GKA ’04.  Include corr.’s ~ g2 in matrix σ(T) (ok when T > 1.2 Tc)
N.B.: width of interface diverges as T→Tc, ~ √(t2 - c2)/(t2-1).

σ(T ) =
4π2T 2

3
�

6g2

(t2 − 1)3/2

t (t2 − c2)
, t =

T

Tc

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8

/T
2

T / TC

Latt. data SU(2)
model, SU(2)

GKA

↑ Tc 2.8 Tc ↑T→

 ⇐ matrix model 
Semi-classical⇒

 ⇐ lattice

σ

T 2
↑

 ⇐ lattice

Lattice:
de Forcrand, 
D’Elia, Pepe, 
lat/0007034 
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Adjoint Higgs phase, N = 2
 A0cl ~ q σ3, so 〈q〉 ≠ 0 generates an (adjoint) Higgs phase:
RDP, ph/0608242; Unsal & Yaffe, 0803.0344, Simic & Unsal, 1010.5515

In background field, A = A0cl + Aqu : D0cl Aqu = ∂0 Aqu + i g [A0cl , Aqu]
Fluctuations ~ σ3 not Higgsed, ~ σ1,2 Higgsed, get mass ~ 2 π T 〈q〉
Hence when 〈q〉 ≠ 0, for T < 1.2 Tc, splitting of masses:

1.0 1.1 1.2 1.3 1.4 1.5
0.0

0.2

0.4

0.6

0.8

1.0

↑ Tc

T→
1.5 Tc ↑

 ⇐ diagonal A0 mode

⇐ off-diagonal A0 modesmeff

mpert
↑

At Tc: mdiag = 0,
moff ~ 2 mpert.

1 →

↑ 1.2 Tc

 mpert = √2/3 g T:

        m/mpert ~ .56
at 1.5 Tc, from Vnon.
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Matrix model: N ≥ 3

Why the transition is always 1st order

One parameter model
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Path to Z(3), three colors

SU(3): two diagonal λ’s, so two q’s:

λ3 =




1 0 0
0 −1 0
0 0 0



 ; λ8 =




1 0 0
0 1 0
0 0 −2





Z(3) paths: move along  λ8, not λ3: q8 ≠ 0, q3 = 0.  

L = 1 L = e2πi/3 1
q8 = 1q8 = 0 q8 = 3/8

L = e2πiq8λ8/3

A0 =
2πT

3 g
(q3 λ3 + q8 λ8)
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Z(3) paths in SU(3) gauge

For SU(3), two diagonal generators, 
λ3 =




1 0 0
0 −1 0
0 0 0



 ; λ8 =




1 0 0
0 1 0
0 0 −2





Z(3) paths: q8 ≠ 0, q3 = 0:

Three degenerate vacua, for q8 = 0, 1, and 2.  
Move between vacua along blue lines,

�0.4 �0.2 0.2 0.4 0.6 0.8 1.0

�0.5

0.5

q8 = 0

Re l→

Im l↑

x

x

x

q8 = 1

q8 = 2

A0 =
2πT

3g
(q8 λ8 + q3 λ3)

L = e2πiq8λ8/3

� =
1
3

trL =
�
e2πi/3

�q8

, if q8 = 0, 1, 2
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Path to confinement, three colors

L = e2πiq3λ3/3Now move along λ3:

In particular, consider q3 = 1: 
Elements of e2π i/3 Lc same as those of Lc.  
Hence tr Lc = tr Lc2 = 0: Lc confining vacuum

Path to confinement: along  λ3, not λ8, q3 ≠ 0, q8 = 0.  

Lc =




e2πi/3 0 0

0 e−2πi/3 0
0 0 1





q3 = 0 q3 = 3/8 q3 = 1
� = 0� ≈ .8� = 1
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General potential for any SU(N)

For SU(N), Σj=1...N qj = 0.  Hence N-1 independent qj’s, = # diagonal generators.

At 1-loop order, the perturbative potential for the qj’s is

As before, assume a non-perturbative potential ~ T2 Tc2:

Vnon(q) =
2π2

3
T 2T 2

c



− c1

5

�

i,j

qij(1− qij)− c2

�

i,j

q2
ij(1− qij)2 +

4
15

c3





Vpert(q) =
2π2

3
T 4



− 4
15

(N2 − 1) +
�

i,j

q2
ij(1− qij)2



 , qij = |qi − qj |

Aij
0 =

2πT

g
qi δij Lij = e2πi qj δij

Ansatz: constant, diagonal matrix
              i, j = 1...N
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Confining vacuum in SU(3)
Alternately, consider moving along λ3.  
In particular, consider q3 = 1:

Lc =




e2πi/3 0 0

0 e−2πi/3 0
0 0 1





trLc = trL2
c = 0

Lc is the confining vacuum, X:
“center” of space in λ3 and λ8 

Move from deconfined vacuum, L = 1,
to the confined vacua, Lc, along red line:

�0.4 �0.2 0.2 0.4 0.6 0.8 1.0

�0.5

0.5

L = e2πiq3λ3/3

Re l→

Im l↑

x

x

xx
Elements of e2π i/3 Lc same as those of Lc.  Hence

Lc
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Path to confinement, four colors
Move to the confining vacuum along one direction,  qjc:
(For general interfaces, need all N-1 directions in qj space)

Perturbative vacuum: q = 0. 
Confining vacuum: q = 1.
Four colors:

qc
j =

�
2j −N − 1

2N

�
q , j = 1 . . . N

q = 0

General N: confining vacuum = uniform distribution for eigenvalues of L
        For infinite N, distribution flat.

q = 1/2
� = 1 � ≈ .65 � = 0

q = 1
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Cubic term for all N ≥ 3, so transition first order

No term linear in φ.  Cubic term in φ for all N ≥ 3; vanishes for N = 2.

Existence of cubic term generic.
Along qc, about φ = 0 there is no symmetry of φ → - φ for any N  ≥ 3.  
Hence terms ~ φ3, and so a first order transition, are ubiquitous.

Special to matrix model, with the qi’s elements of Lie algebra.

Svetitsky and Yaffe ’80: Veff(loop) => 1st order only for N=3; loop element Lie group

Define φ = 1 - q,
Confining point φ = 0

m2
φ = 1 +

6
N2

− c1

t2 − c2

Vtot =
π2(N2 − 1)

45
T 4

c t2 (t2 − 1) �V (φ, t) , t =
T

Tc

�V (φ, t) = −m2
φ φ2−2

�
N2 − 4

N2

�
φ3 +

�
2− 3

N2

�
φ4
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Cubic term for four colors
Construct Veff either from q’s, or equivalently, loops: tr L, tr L2, tr L3....
N = 4: |tr L|2 and |tr L3|2  not symmetric about q = 1, so cubic terms, ~ (q - 1)3.
           (|tr L2|2 symmetric, residual Z(2) symmetry)
Cubic terms special to moving along qc in a matrix model.  Not true in loop model

0.40 0.45 0.50 0.55 0.60
0.00

0.02

0.04

0.06

0.08

0.10

x
⇐ |tr L|2

⇐ |tr L3|2

⇑ q = 1

qc ⇒

 ⇑ .8  ⇑ 1.2
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0.400.450.500.550.60
0.00

0.02

0.04

0.06

0.08

0.10

x
⇐ |tr L|2

|tr L3|2 ⇒

⇑ q =1
qc ⇒

 ⇑ .8 ⇑ 1.2

Cubic term for four colors

Asymmetric in reflection about q = 1

         ⇔
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Lattice vs 0- and 1- parameter matrix models, N = 3
Results for N=3 similar to N=2.
0-parameter model way off.
Good fit e-3p/T4 for 1-parameter model, 

Again, c2 ~ 1, so at Tc, terms ~ q2(1-q)2 almost cancel.  

c1 = 0.32 , c2 = 0.83 , c3 = 1.13

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

↑ Tc 3 Tc ↑T→

 ⇐ 1-parameter 

 ⇐ 0-parameter 

 ⇐ Points: lattice  
Lattice:
Bielefeld, lat/9602007
Datta & Gupta, 1006.0938e− 3p

8 T 4
↑

45Tuesday, July 19, 2011



Lattice vs 1- parameter model, N = 3

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1  1.5  2  2.5  3

T / TC

p/T4

Latt. p/T4
e/3T4

Latt. e/3T4
/T4

Latt. /T4

↑ Tc 3Tc ↑T→

 ⇐ e-3p/T4, lattice

 ⇐ e-3p/T4, model

  ⇓ e/T4, lattice  ⇓ e/T4, model

 ⇑ p/T4, lattice
 ⇑ p/T4,model

c1 = 0.32 , c2 = 0.83 , c3 = 1.13
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Polyakov loop: matrix models ≠ lattice

1.0 1.2 1.4 1.6 1.8 2.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Renormalized Polyakov loop from lattice does not agree with either matrix model

〈l〉 - 1 ~ 〈q〉2: By 1.2 Tc,  〈q〉 ~ .05, negligible.
Again, for T > 1.2 Tc, the T2 term in pressure due entirely to the constant term, c3!

↑ Tc T→ 2 Tc ↑

 ⇐ lattice

 ⇑ 0-parameter

1-parameter ⇓

��� ↑

��� → e−E0/T ��� ?

Ambiguity of zero point energy?
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Interface tension, N = 2 and 3
Order-order interface tension, σ, from matrix model close to lattice.
For T > 1.2 Tc, path along λ8; for T < 1.2 Tc, along both λ8 and λ3.

σ(Tc)/Tc2 nonzero but small, ~ .02.  Results for N =2 and N = 3 similar - ?

 0

 0.5

 1

 1.5

 2

 2.5

 1  1.5  2  2.5  3  3.5  4  4.5  5

/T
2  / 

(N
-1

)

T / TC

Lattice data
GKA

model, SU(2)
model, SU(3)

σ

(N − 1)T 2
↑

Semi-classical⇒

 ⇐ matrix model,
             N = 2 

 ⇐ matrix model,
             N = 3 

↑ Tc 5 Tc ↑T→

Lattice:
de Forcrand, 
D’Elia, Pepe, 
lat/0007034 
de Forcrand, Noth
lat/0506005

lattice, N=3 ⇒
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Adjoint Higgs phase, N = 3

For SU(3), deconfinement along A0cl ~ q λ3.  Masses ~ [λ3, λi]: two off-diagonal.
Splitting of masses only for T < 1.2 Tc:
Measureable from singlet potential,  〈tr L†(x) L(0)〉, over all x.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 1  1.2  1.4  1.6  1.8  2

m
 / 

gT

T / TC

a=b
|a-b|=1
|a-b|=2

T/Tc→

meff

mpert
↑

⇐ 4 off-diagonal, K’s

⇐ 2 off-diagonal, π’s

⇐ 2 diagonal modes

At Tc: mdiag 
small, but ≠ 0

mpert = g T,
m/mpert ~ .8 at 1.5 Tc, from Vnon.
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Matrix model: N ≥ 3

To get the latent heat right, two parameter model.

Thermodynamics, interface tensions improve

50Tuesday, July 19, 2011



Latent heat, and a 2-parameter model
Latent heat, e(Tc)/Tc4:  1-parameter model too small:
1-para.: 0.33.  BPK: 1.40 ± .1; DG: 1.67 ± .1.  

2-parameter model, c3(T). Like MIT bag constant
WHOT: c3(∞) ~ 1.  Fit c3(1) to DG latent heat
Fits lattice for T < 1.2 Tc, overshoots above.

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

e− 3p

8 T 4
↑

↑ Tc 3Tc ↑T→

 ⇐ Lattice  

 ⇐ 2-parameter 

 ⇐ 1-parameter 

Latent heat, lattice:
BPK: Beinlich, 
Peikert, Karsch 
lat/9608141
DG: Datta, Gupta 
1006.0938

c1 = .833 , c2 = .552

Bag const ~ (262 MeV)4

c2 not near 1, vs 1-para.

c3(1) = 1.33 , c3(∞) = .95

c3(T ) = c3(∞) +
c3(1)− c3(∞)

t2
, t =

T

Tc
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1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

Anomaly: 2-parameter model vs lattice

e− 3p

8 T 4
↑

↑ Tc 3Tc ↑T→

 ⇐ Lattice  

 ⇐ 2-parameter 
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1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

0.5

1
8

e− 3p

T 2 T 2
c

↑

↑ Tc 3Tc ↑T→

 ⇐ Lattice  

 ⇐ 2-parameter 

Anomaly times T2: 2-parameter model vs lattice
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Thermodynamics of 2-parameter model, N = 3

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1  1.5  2  2.5  3
T / TC

Latt. p/T4

p/T4
Latt. e/3T4

e/3T4
Latt. /3

/3

 ⇐ e-3p/T2Tc2, lattice

 ⇓e-3p/T2Tc2, model

 ⇑ p/T4, lattice

 ⇑ p/T4, lattice

  ⇓ e/T4, lattice
 ⇓ e/T4, model

T/Tc→

c3(1) = 1.33 , c3(∞) = .95 , c1 = .833 , c2 = .552
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Interface tensions, 2-parameter model, N = 3
Order-order interface tension, σ, close to lattice. Order-order σ(Tc)/Tc2 ~ .043.  

1st order transition, so can compute order-disorder σ(Tc)/Tc2 ~ .022, vs
Lattice: Lucini, Teper, Wegner, lat/0502003, .019 Beinlich, Peikert, Karsch lat/9608141 0.16

 0

 0.5

 1

 1.5

 2

 2.5

 1  1.5  2  2.5  3  3.5  4  4.5  5

/T
2  / 

(N
-1

)

T / TC

Latt. data SU(2)
Latt. data SU(3)

model, SU(2)
model, SU(3)

σ

(N − 1)T 2
↑

↑ Tc 5 Tc ↑

lattice, N=3 ⇓

 ⇑ 2-parameter model, N=3
lattice, N=2 ⇓

Lattice:
de Forcrand, 
D’Elia, Pepe, 
lat/0007034
de Forcrand, Noth
lat/0506005

Order-order σ:

T→
55Tuesday, July 19, 2011



2-parameter model, N = 4
Assume c3(∞) = 0.95, like N=3.  Fit c3(1) to latent heat, Datta & Gupta, 1006.0938
Order-disorder  σ(Tc)/Tc2 ~ .08, vs lattice, .12, Lucini, Teper, Wegner, lat/0502003

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1  1.5  2  2.5  3
T / TC

Latt. p/T4

p/T4
Latt. e/3T4

e/3T4
Latt. /3

/3 T/Tc→

c3(1) = 1.38 , c3(∞) = .95 , c1 = 1.025 , c2 = 0.39

 ⇑ p/T4, lattice

 ⇑ p/T4, model

  ⇓ e/T4, lattice
  ⇓

 ⇓ e/T4, model

 ⇐ e-3p/T2Tc2, lattice
 ⇓e-3p/T2Tc2, model
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2-parameter model, N = 6

 ⇑ p/T4, lattice

Order-disorder  σ(Tc)/Tc2 ~ .25, vs lattice, .39, Lucini, Teper, Wegner, lat/0502003

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1  1.5  2  2.5  3
T / TC

Latt. p/T4

p/T4
Latt. e/3T4

e/3T4
Latt. /3

/3 T/Tc→

 ⇑ p/T4, model

  ⇓ e/T4, lattice
  ⇓

 ⇓ e/T4, model

 ⇐ e-3p/T2Tc2, lattice

 ⇓e-3p/T2Tc2, model

c3(1) = 1.42 , c3(∞) = .95 , c1 = 1.21 , c2 = 0.23
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Transition region narrow: for pressure, < 1.2 Tc!
                   For interface tensions, < 4 Tc...

Above 1.2 Tc, pressure dominated by constant term ~ T2 .

What does this term come from?    Gluon mass (for spatial gluons)?  

In 2+1 dimensions, ideal T3. Caselle + ...: also T2 term in pressure.
             But mass would be m2 T, not m T2.    

T2 term like free energy of massless fields in 2 dimensions: string? Above Tc?

Need to include quarks! 

Can then compute temperature dependence of: 

              shear viscosity, energy loss of light quarks, damping of quarkonia...

Conclusions
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Lattice: SU(N) in 2+1 dimensions
Caselle, Castagnini, Feo, Gliozzi, Panero, T < Tc, 1105.0359, T > Tc, below, unpublished
SU(N) for N = 2, 3, 4, 5.   # time steps = 6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Tc / T

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

!
 / 

[ T
3  ( 

N
2  - 

1 
) ]

SU(2)
SU(3)
SU(4)
SU(5)

T2-dependence in the trace of the energy-momentum tensor
Nt = 6 lattices

1
N2 − 1

e− 2p

T 3
↑

Tc/T→

↑ 10 Tc ↑ 1.1 Tc↑ 2 Tc

p(T ) ≈ # T 2(T − c Tc) , c ≈ 1.
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